
MODULE IV

ADVANCED FEATURES OF JAVA

Syllabus

 Event handling - Event Handling Mechanisms, Delegation

Event Model, Event Classes, Sources of Events, Event

Listener Interfaces, Using the Delegation Model.

EVENT

➢ When the user interacts with a GUI application, an event is generated.

Examples of user events are clicking a button, selecting an item or

closing a window. Events are represented as Objects in Java.

➢Change in the state of an object is known as event i.e. event

describes the change in state of source.

➢ Events are generated as result of user interaction with the

graphical user interface components.

➢ For example, clicking on a button, moving the mouse, entering a

character through keyboard, selecting an item from list, scrolling

the page are the activities that causes an event to happen.

Types of Event

➢The events can be broadly classified into two categories:

Foreground Events

➢Those events which require the direct interaction of user. They

are generated as consequences of a person interacting with the

graphical components in Graphical User Interface. For example,

clicking on a button, moving the mouse, entering a character

through keyboard, selecting an item from list, scrolling the page

etc.

Background Events

➢ Those events that require the interaction of end user are known

as background events. Operating system interrupts, hardware or

software failure, timer expires, an operation completion are the

example of background events.

EVENT HANDLING

➢ Event Handling is the mechanism that controls the event

and decides what should happen if an event occurs.

➢ This mechanism have the code which is known as event

handler that is executed when an event occurs.

➢ Java Uses the Delegation Event Model to handle the

events.

➢ This model defines the standard mechanism to generate

and handle the events.

➢Let's have a brief introduction to this model.

Delegation Event Model

• There are three participants in event delegation model in
Java;

Event Source – the class which broadcasts the events
Event Listeners – the classes which receive notifications of
events
Event Object – the class object which describes the event.

• Its concept is :
o A source generates an event and sends it to one or more
listeners.

o The listener simply waits until it receives an event.
o Once received, the listener processes the event and then

returns.
• The listeners must register with a source in order to receive an

event notification.

Advantage :

➢The benefit of this approach is that the user interface logic

is completely separated from the logic that generates the

event.

➢ The user interface element is able to delegate the

processing of an event to the separate piece of code.

➢ In this model ,Listener needs to be registered with the

source object so that the listener can receive the event

notification.

➢This is an efficient way of handling the event because the

event notifications are sent only to those listener that want

to receive them.

How Events are handled
➢ A source generates an Event and send it to one or more listeners

registered with the source.

➢ Once event is received by the listener, they process the event and

then return.

➢ Events are supported by a number of Java packages, like java.util,

java.awt and java.awt.event

Event Model : Event
 An event is an object that describes a state change in a source or

it is a type of signal to the program that something has

happened.eg. Button pressed, window closed etc.

 It can be generated by

 Personal interaction

 Example : Pressing a button, entering a character via the

keyboard, selecting an item in a list, and clicking the mouse

etc.

 Not directly caused by personal interactions

 Example : An event may be generated when a timer

expires, a counter exceeds a value, a software or hardware

failure occurs, an operation is completed etc.

Event Model : Event Sources

 A source is an object that generates an event.

 A source must register listeners in order for the listeners to

receive notifications about a specific type of event.

 General form: public void addTypeListener(TypeListener el)

Type - event name

el - reference to the event listener.

 Example :

addKeyListener() :The method that registers a keyboard

event listener

addMouseMotionListener() :The method that registers

a mouse motion listener

 Sources may generate more than one type of event.

 Multicasting: When an event occurs, all registered listeners are

notified and receive a copy of the event object. The notifications

are sent only to listeners that register to receive them.

 Unicasting: Some sources may allow only one listener to

register.

public void addTypeListener(TypeListener el)

throws java.util.TooManyListenersException

 Unregister a specific type of event

public void removeTypeListener(TypeListener el)

Type - event name

el - reference to the event listener.

 Example :

removeKeyListener() :To remove a keyboard listener

Event Model : Event Listener

 A listener is an object that is notified when an event occurs.

 It has two major requirements.

 It must have been registered with one or more sources to

receive notifications about specific types of events.

 It must implement methods to receive and process these

notifications. These methods are defined in a set of interfaces

found in java.awt.event.

 Example: MouseMotionListener interface defines two

methods to receive notifications when the mouse is dragged

or moved. Any object may receive and process one or both of

these events if it provides an implementation of this interface.

Event Classes
 The classes that represent events are the core of java’s event handling.

There are many event classes.

 EventObject

 superclass for all events

 defined inside java.util package

 constructor : EventObject(Object src)

src – object that generates event

 two methods:

 Object getSource() : returns the event source

 toString() : returns the string equivalent of the event

 AWTEvent

 subclass of EventObject.

 superclass of all AWT-based events

 defined within the java.awt package

 int getID() – returns an integer that determine the event type

Event class hierarchy

AWT

 AWT stands for Abstract Window Toolkit.

 It is a platform dependent API for creating Graphical User

Interface (GUI) for java programs.

 Why AWT is platform dependent? Java AWT calls native

platform (Operating systems) subroutine for creating components

such as textbox, checkbox, button etc. In simple, an application

build on AWT would look like a windows application when it runs

on Windows, but the same application would look like a Mac

application when runs on Mac OS.

 AWT is rarely used now days because of its platform dependent

and heavy-weight nature.

Components and containers
➢All the elements like buttons, text fields, scrollbars etc are

known as components.

➢ In AWT we have classes for each component as shown in the
above diagram.

➢To have everything placed on a screen to a particular position,
we have to add them to a container.

➢A container is like a screen wherein we are placing
components like buttons, text fields, checkbox etc.

➢ In short a container contains and controls the layout of
components.

➢A container itself is a component (shown in the above
hierarchy diagram) thus we can add a container inside
container.

Types of containers:
As explained above, a container is a place wherein we add components

like text field, button, checkbox etc. There are four types of containers

available in AWT: Window, Frame, Dialog and Panel. As shown in the

hierarchy diagram above, Frame and Dialog are subclasses of Window

class.

➢Window: An instance of the Window class has no border and no title

➢Dialog: Dialog class has border and title. An instance of the Dialog class

cannot exist without an associated instance of the Frame class.

➢ Panel: Panel does not contain title bar, menu bar or border. It is a

generic container for holding components. An instance of the Panel class

provides a container to which to add components.

➢ Frame: A frame has title, border and menu bars. It can contain several

components like buttons, text fields, scrollbars etc. This is most widely

used container while developing an application in AWT.

Creating a Frame

1) By extending Frame class

2) By creating the instance of Frame class

Methods

public void add(Component c)

public void setSize (int width, int height)

public void setLayout(LayoutManager m)

public void setVisible(boolean status)

Example 1: Creating Frame By extending Frame class

import java.awt.*;

public class Frame1 extends Frame{

Frame1(){

setSize(500,300);

setTitle("This is my First AWT example"); Output

setLayout(null);

setVisible(true);

}

public static void main(String args[]){

Frame1 f=new Frame1();

}

}

Example 2: Creating Frame using instance of Frame class

import java.awt.*;

public class ButtonExample {

public static void main(String[] args) {

Frame f=new Frame("Button Example");

Button b=new Button("Click Here");

b.setBounds(50,100,80,30);

f.add(b);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

}

Output:

Example 3

Event classes and interface

Steps involved in event handling

➢The User clicks the button and the event is generated.

➢Now the object of concerned event class is created

automatically and information about the source and the event

get populated with in same object.

➢Event object is forwarded to the method of registered listener

class.

➢The method is now get executed and returns.

Points to remember about listener

➢ In order to design a listener class we have to develop some

listener interfaces.

➢ These Listener interfaces forecast some public abstract

callback methods which must be implemented by the listener

class.

➢ If we do not implement the predefined interfaces then your

class can not act as a listener class for a source object.

Java AWT Button Example with ActionListener
import java.awt.*;

import java.awt.event.*;

public class ButtonExample implements ActionListener{

Frame f=new Frame("Button Example"); Output

TextField tf=new TextField();

Button b=new Button("Click Here");

ButtonExample() {

f.add(b); f.add(tf);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

tf.setBounds(50,50, 180,20);

b.setBounds(50,100,60,30);

b.addActionListener(this); }

public void actionPerformed(ActionEvent e){

tf.setText("Welcome to Java Programming");

}

public static void main(String[] args) {

ButtonExample b=new ButtonExample();

} //close main } //close ButtonExample

SOURCES OF EVENT

EVENT LISTENER INTERFACES

 The ActionListener Interface
 Defines actionPerformed() method that is invoked when an action

event occurs.

void actionPerformed(ActionEvent ae)

 The AdjustmentListener Interface
 Defines adjustmentValueChanged method that is invoked when an

adjustment event occurs.

void adjustmentValueChanged(AdjustmentEvent ae)

 The ComponentListener Interface
 Defines four methods that is invoked when a component is resized,

moved, shown or hidden

void componentResized(ComponentEvent ce)

void componentMoved(ComponentEvent ce)

void componentShown(ComponentEvent ce)

void componentHidden(ComponentEvent ce)

 The ContainerListener Interface
 Defines two methods. Respective methods are called when a component is

added or removed from a container.

void componentAdded(ContainerEvent ce)
void componentRemoved(ContainerEvent ce)

 The FocusListener Interface :
 defines two methods. Respective methods are called when keyboard

obtains and loses focus

void focusGained(FocusEvent fe)
void focusLost(FocusEvent fe)

 The ItemListener Interface
void itemStateChanged(ItemEvent ie)

 The KeyListener Interface
void keyPressed(KeyEvent ke)
void keyReleased(KeyEvent ke)
void keyTyped(KeyEvent ke)

 The MouseListener Interface

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

 The MouseMotionListener Interface

void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

 The MouseWheelListener Interface

void mouseWheelMoved(MouseWheelEvent mwe)

 The TextListener Interface

void textChanged(TextEvent te)

 The WindowFocusListener Interface

void windowGainedFocus(WindowEvent we)

void windowLostFocus(WindowEvent we)

 The WindowListener Interface

void windowActivated(WindowEvent we)

void windowClosed(WindowEvent we)

void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)

void windowDeiconified(WindowEvent we)

void windowIconified(WindowEvent we)

void windowOpened(WindowEvent we)

Applets

 Applet is a special type of program that is embedded in

the webpage to generate the dynamic content.

 There are two types of applets:

 The first type use the Abstract Window Toolkit (AWT) to provide

the graphic user interface (or use no GUI at all). This style of

applet has been available since Java was first created

 The second type of applets are those based on the Swing class

JApplet. Swing applets use the Swing classes to provide the

GUI. Swing offers a richer and often easier-to-use user interface

than does the AWT

Application Program Vs Applet Program

 Applet does not use main() method for initiating the execution of a

code. Applet, when loaded, automatically call certain methods of

Applet class to start and execute the applet code.

 Applets are not stand-alone programs. Instead, they run within either a

web browser or using an applet viewer.

 Applets cannot read from or write into a file in the local system.

 Applets cannot communicate with each other server on the network.

 Applets are restricted from using libraries from other languages such

as C or C++.

Applets : Example

import java.awt.*;

import java.applet.*;

public class SimpleApplet extends Applet

{

public void paint(Graphics g)

{

g.drawString("A Simple Applet", 20, 20);

}

}

Abstract Window Toolkit, for GUI

applet , for Applet class

Always (public and extends Applet)

Called to redraw applet
Over ridden method[class Applet]

 Applet Viewer is used to execute applets in this section.

 Comment is included at the head of the Java source code file that

contains the APPLET tag.

/*

<applet code="SimpleApplet" width=200 height=60>

</applet>

*/

 Do the following three steps:

1. Edit a Java source file with applet tag.

2. Compile the program.

3. Execute the applet viewer, specifying the name of your applet’s

source file. The applet viewer will encounter the applet tag

within the comment and execute the applet.

import java.awt.*;

import java.applet.*;

/*

<applet code="SimpleApplet" width=200 height=60>

</applet>

*/

public class SimpleApplet extends Applet

{

public void paint(Graphics g)

{

g.drawString("A Simple Applet", 20, 20);

}

}

Output

❖ Save file as SimpleApplet.java
❖ Compile: javac SimpleApplet.java
❖ Execute: appletviewer SimpleApplet.java

Source code is documented
with prototype of HTML
statements

Applet Architecture

 An applet is a window-based program.

 Applets are event driven. An applet waits until an event occurs.

 The user interacts with the applet when he or she wants.

 The AWT notifies the applet about an event by calling an event
handler that has been provided by the applet.

 The applet must take appropriate action and then quickly return
control to the AWT.

 Example :

 If the user clicks a mouse inside the applet’s window, a mouse-
clicked event is generated

 If the user presses a key while the applet’s window has input focus, a
keypress event is generated.

Applet Life Cycle

1. Born on initialization state :

 Applet enters the initialization state when it is first loaded.

 This is achieved by calling init().

 This occurs only once in the applet’s life cycle.

 At this stage, we may do the following

 Create objects needed by the applet

 Initialize variables

 Load images or fonts.

 Setup colors.

2. Running state :

 Applet enters this state when the system calls the start() method

 This occurs automatically after the applet is initialized(init())

 Starting can also occur if the applet is already in stopped(Idle) state.

 start() can be called more than once.

 start() is called each time an applet’s HTML document is displayed

onscreen. So, if a user leaves a web page and comes back, the applet

resumes execution at start().

3. Idle state or Stopped state :

 An applet becomes idle when it is stopped from running. We can do

so by calling stop() explicitly.

 Stopping occurs automatically when we leave the page containing the

currently running applet.

 Example : when it goes to another page.

 If the user returns to the page, we can restart them by calling start().

4. Dead or destroyed state :

 An applet is said to be dead when it is removed from memory.

 This occurs by invoking destroy().

 At this point, we should free up any resources the applet may be

using. The stop() method is always called before destroy().

 This occurs only once in the applet life cycle.

5. Display state:

 Applet moves to this state whenever it has to perform some output

operations on the screen.

 This happens immediately after the applet enters into the running

state.

 paint() is called to accomplish this task.

 The paint() method is called each time our applet’s output must be

redrawn.

 This situation can occur for several reasons. For example,

 the window in which the applet is running may be overwritten by another

window and then uncovered.

 the applet window may be minimized and then restored.

 The paint() method has one parameter of type Graphics. This

parameter describes the graphics environment in which the applet is

running.

 Applets override a set of methods

 init(), start(), stop(), and destroy() : These are defined by Applet

 paint() : It is defined by the AWT Component class.

 When an applet begins, the AWT calls the following methods, in

this sequence:

1. init()

2. start()

3. paint()

 When an applet is terminated, the following sequence of method

calls takes place:

1. stop()

2. destroy()

Applet Display Methods

 To output a string to an applet :

 drawString(), which is a member of the Graphics class

void drawString(String message, int x, int y)

message is the string to be output beginning at x,y. In a Java window,

the upper-left corner is location 0,0.

 To set the background color of an applet’s window, use

setBackground().

void setBackground(Color newColor)

 To set the foreground color, use setForeground().

void setForeground(Color newColor)

where newColor specifies the new color.

 The class Color defines the constants to specify colors:

Color.black Color.magenta Color.blue Color.orange

Color.cyan Color.pink Color.darkGray Color.red

Color.gray Color.white Color.green Color.yellow

Color.lightGray

 You can obtain the current settings for the background and

foreground colors by calling getBackground() and

getForeground().

Color.getBackground()

Color getForeground()

 The default foreground color is black. The default background color

is light gray.

Status Window
import java.awt.*;

import java.applet.*;

/*

<applet code="StatusWindow" width=300 height=50>

</applet>

*/

public class StatusWindow extends Applet

{

public void init()

{

setBackground(Color.cyan);

}

public void paint(Graphics g)

{

g.drawString("This is in the applet window.", 10, 20);

showStatus("This is shown in the status window.");

}

}

Output

/* <applet code="ButtonExample2" width=400 height=400> </applet> */

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class ButtonExample2 extends Applet implements ActionListener{

TextField tf=new TextField(20);

Button b1=new Button("OK");

Button b2=new Button("Clear");

public void init(() {

add(b1);add(b2);add(tf);

b1.addActionListener(this);

b2.addActionListener(this); }

public void actionPerformed(ActionEvent e){

if(e.getSource()==b1)

tf.setText("Welcome");

else

tf.setText(" "); } }

